Inertial Mass Viewed as Reaction of the Vacuum to Accelerated Motion
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ABSTRACT:

Preliminary analysis of the momentum flux (or of the Poynting vector) of the classical electromagnetic version of the
quantum vacuum consisting of zero-point radiation impinging on accelerated objects as viewed by an inertial
observer suggests that the resistance to acceleration attributed to inertia may be a force of opposition originating in
the vacuum. This analysis avoids the ad hoc modeling of particle-field interaction dynamics used previously by
Haisch, Rueda and Puthoff (1994) to derive a similar result. This present approach is not dependent upon what
happens at the particle point but on how an external observer assesses the kinematical characteristics of the zero-

point radiation impinging on the accelerated object. A relativistic form of the equation of motion results from the
present analysis

INTRODUCTION:

It was recently proposed [by Haisch, Rueda and Puthoff{1994), henceforth HRP}, that the inertial property of matter
could originate in interactions between electromagnetically interacting particles at the level of their most fundamental
components (e.g, electrons, quarks) and the quantum vacuum (QV). This general idea is a descendent of a
conjecture of Sakharov (1968) for the case of gravity that can be extended by the principle of equivalence to the case
of inertia. In the accompanying paper (Haisch and Rueda, 1997), we give more references and further discussion
pertinent to this point. The approach of stochastic electrodynamics (SED) was used in HRP to study the classical
dynamics of a highly idealized model of a fundamental particle constituent of matter (that contained a “parton”, i.c., a
surrogate for a very fundamental particle component) responding to the driving forces of the so-called classical
electromagnetic zero-point field (ZPF), the classical analog of the QV.

The primary purpose of the endevour reported here is to find a simpler approach, which attempts to avoid
drawbacks and model-related issues in the approach of HRP (see Cole 1997, Cole and Rueda, 1997), by examining
how an opposing flux of radiative energy and momentum should arise under natural and suitable assumptions in an
accelerated frame from the viewpoint of an inertial observer and without regard to details of particle-field dynamics,
i.e., independently of any dynamical models for particles. Using relativistic transformations for the electromagnetic
fields, it is argued that upon acceleration a time rate of change of momentum density or momentum flux will arise out
of the ZPF, and that this turns out to be directed against and linearly proportional to the acceleration. This arises
after evaluation of the ZPF momentum density as it appears at a given point in an accelerated frame S, to an
independent inertial laboratory observer due to transformations of the ficlds from the observer's inertial laboratory
reference frame, I+, to another inertial frame I, instantancously comoving with the object and from the viewpoint of
the observer in the laboratory inertial frame I+. Absorption or scattering of this radiation by the accelerated charged
particle will thus result in a force opposing the acceleration, yielding an f = ma relation for subrelativistic motions.
(Vectors are symbolized throughout by boldface letters or by an arrow or a line on top of the letter).

ZERO-POINT FIELD AND HYPERBOLIC MOTION:
We assume a non-inertial frame of reference, S, accelerated in such a way that the acceleration a as seen from a

particle fixed to a specific point, namely (c¥/a, 0, 0), in the accelerated system, S, remains constant. Such condition
leads as in Boyer (1984) and HRP to the well-known case of hyperbolic motion (see.c.g. Rindler, 1991) We again
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represent the classical electromagnetic ZPF in the traditional form and assume the same three reference systems I«, I
and S, as in HRP and originally introduced in Boyer (1984). I« is the iiertial laboratory frame. S is the accelerated
frame in which the particle is placed at rest at the point (c*/a, 0, 0). T is the particle proper time as measured by a
clock located at this same particle point (c*/a, 0, 0) of S. I is an inerial system whose (c%/a, 0, 0) point at proper
time  exactly coincides with the particle point of S. The acceleration oof this (c*/a, 0, 0) point of S is a as measured
from I;. Hyperbolic motion is defined such that a is the same for all proper times t as measured in the
corresponding I. frames at a point (c*/a, 0, 0) that in each one of these I; frames instantancously comoves and
coincides with the corresponding particle point, namely (c*/a, 0, 0) of S. At proper time t =0, this particle

point of the S system instantaneously coincides with the (c*/a, 0, 0) pointof I+ and thus I+ =I; (t=0). We
refer to the observer's laboratory time in I« as t», chosen such that t« = 0 at t© = 0. For simplicity we let the particle
acceleration a at proper time t take place along the x-direction so that -1 = a%, is the same constant vector, as seen at
every proper time T in every corresponding I system. The acceleration of the (c%/a, 0, 0) point of S as seen from Is
is ae=v.%a. We take S as a “rigid” frame. It can be shown that as a consequence the acceleration a is not the same
for the different points of S, but we are only interested in points inside a small neighborhood of the accelerated object

[Rindler (1991)]. Specifically we are interested in a neighborhood of the object’s central point that contains the
object and within which the acceleration is everywhere essentially the same.

Because of the hyperbolic motion, the velocity u,(t) =, in S with 1espect to I+, is

B.= m = tanh(gﬁ)

c c )
and then
2 )
7.=(1-$2)2 =cosh(-c£ ?
(1-57) z) o
The ZPF in the laboratory system I. is given by
E?(R.t.)= . [d*Ke(k, )H, (0)codF - R. - o, - (F, 2)}
A=l (3a)
B*(R.1)=3 [ k(i x 8)H,, (@) cod k- R. - o, - 6(F, 7))
A=l (3b)

R« and te refer respectively to the space and time coordinates of the point of observation of the field in I. At te=
0, the point R« = ( c*/a)k of I and the particle in S coincide. Th: phase term {6(k, A)} is a family of random
variables, uniformly distributed between 0 and 2%, whose mutually independent elements are indexed by the
wavevector k and the polarization index A. Furthermore one defines,

ho
Hy(0)=——.
G}

The coordinates Re and time t+ refer to the particle point of the accelerated frame S as viewed from I» We, for

convenience, Lorentz-transform the fields from I+ to the corresponding I; frame tangential to S and then, omitting for
simplicity to display explicitly the A andk dependence in the polari:-ation vector
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&=&k,A),

we obtain

E®(0,7)= z jdsk{fa, +5rde,~B.(fx 2‘):]+2y,[2', +B, (i a)y]} «H,(@)ood - —ax, - 6, )
(5a)

B*(0,7) =Z::jd3k{£(l:f x E')X + j)y,[(lz x E‘)y + ﬂ,%,]+5yt[(lz x 2‘)2 - ,Z‘y]} tzp(a))oos{I; ‘R —at,— G(E,Z)],

(5b)

where the zero in the argument of the I; fields, E* and B* actually means the I; spatial point (c*/a, 0, 0). Here we
observe that we take the fields that correspond to the ZPF as viewed from every inertial frame I¢ (whose (c*/a, 0, 0)
point coincides with the particle point (c*/a, 0, 0) of S and instantaneously comoves with the particle at the

cozmesponding instant of proper time t), to also represent the ZPF viewed instantancously and from the single point,
(c*/a, 0,0) in S.

" We can select space and time coordinates and orientation in I. such that

— . c ar
R.(t) - ¥ = — cosh | — (6
a c
to = < sinh (ﬁ) )
a c

From the equations above one obtains [1, 4]

2

E?(0,7)= Zjd:‘k
A=1
x{f?:x + j‘lcosh(ﬂ)[i‘y - tanh(ﬂ)(lg X 2‘) ]+ Z cosh(gl)[i‘, + tanh(a—r—)(ﬁ x 2‘) ]}
c c : c c y
c? ar) wc . (ar =
xH,, (@) cos{kx — cosh(?) -— smh(—c—) - 6(k, A):\

(8a)
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B*(0,7)= g_[cfk
x{f(zé <) +9 cosh(%)[(lf <8) + tanh(ﬂci)z:,] +2 cosh(%)[(le <) - tanh( 27 ), ]}
xH,p(a))cos[kxgcosh(a—Z) (“;c) 1nh( ) o, 1)]

This is the ZPF as instantaneously viewed from the particle fixed to the point (¢/a, 0, O) of S that is performing
the hyperbolic motion.

(8b)

INERTIA REACTION FORCE AND THE ZPF MOMENTUM DENSITY

First we consider the following simple fluid analogy involving as a hewistic device a constant velocity and a spatially
varying density in place of the usual hyperbolic motion through a uniform vacuum medium. Let a small geometric
JSigure of a fixed proper volume V, , move uniformly with subrelativistic velocity v along the x-direction The
volume V, we imagine as always immersed in a fluid that is isotropic, homogeneous and at rest, except such that its
density p(x) increases in the x-direction but is uniform in the y~ and z-directions. Hence, as this small fixed volume
V, moves in the x-direction, the mass enclosed in its volume, V,p(x}, increases. In an inertial frame at rest with
respect to the geometric figure the mass inside the volume V,p(x), is szen to grow. Concomitantly it is realized that
the volume V, is sweeping through the fluid and that this V,p(x) mass grows because there is a net influx of mass
coming into V, in a direction opposite to the direction of the velocity v. In an analogous fashion , for the more
complex situation envisaged in this paper, simultancously with the stcady growth of the ZPF momentum comtained
within the volume of the object discussed above, the object is sweepiig through the ZPF of the I« inertial observer
and for him there is a net influx of momentum density coming from the background into the object and in a direction
opposite to that of the velocity of the object.

As it is the ZPF radiation background of I« in the act of being swept through by the particle which we are calculating
now, we fix our attention on a fixed point of I», say the point of the cbserver at (¢*/a, 0, 0) of I+, that momentarily
coincides with the object at the object proper time © = 0, and consider that point as referred to the inertial frame I,
that instantancously will coincide with the object at a future generalized object proper time T > 0. Hence we
compute the I, -Poynting vector, but evaluated at the (c*/a, 0,0) spact: point of the I+ incrtial frame, namely in I, at
the I. space-time point:

®
2
ct = —c—smh(g—),
a ¢
2 ar
X, =—cosh|—|,y.,=0,z, =0,
a c (10)

where t, , the time of I, is selected such that t, = 0 at proper time © when the particle comoves and coincides with the
(c*/a, 0, 0) point of L, . This Poynting vector we shall denote by N.*. Everything however is ultimately referred to
the 1. inertial frame as that is the frame of the observer that looks t the object and whose ZPF background the
moving object is sweeping through. In order to accomplish this we first compute
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(E*(0,7)xB?(0,7)),=(E,.B..~E..B,.)
= 7((E,e - B.B.) B~ B.E,.)~(Eeat B.B,.)(B,o + B.Es))
= 2B (EL + B+ EL + BL)+y*(1+ B)E,.B.. ~ E..B,.)
= —y*B (EL +BL+EL+BL)

an
that we use in the evaluation of the Poynting vector
—ip C [z -~ C 7
NY = ——<E, x B’ ) = $-S(E(0,7) x B*(0,7)),
4z . ¥ 4 (12)

The integrals are now taken with respect to the I. ZPF background as that is the background that the I.-observer
considers the object to be sweeping through. This is why we will denote this Poynting vector as N. ®, with an
asterisk subindex instead of a t subindex, to indicate that it refers to the ZPF of I.. Observe that in eq.(11) the term
proportional to the ordinary ZPF Poynting vector of I+, vanishes. The net amount of momentum of the background
the particle has swept through after a time t., as judged again from the I+ frame viewpoint, is

- - N 1 ¢ 2/=2 =
p_ T oy Ve s 2 C 25 Z(FE.2 LBV,
D g5V V. xc2 47[;/, i 3(E +B >V

02

13)

We can compute Eqgs. (12) and (13) in more detail. This as well as many other details on the analysis will appear
elsewhere (Rueda and Haisch, 1997). The Poynting vector that the radiation should have at the (c*/a,0,0) point of 1.
but referred to I with the coordinates of eq.(11), can be shown to be

= —zp —3 87| ¢ ho’dw 2at
N& =i<E" B">=-C—‘EB _EB\)=-S| 22 h(——)x
(D= \E > 47rx< B.~E.B,) 4z 3 J 27 |0 e

(14

where E and B stand for E-(0, 1) and B(0,t) respectively as in the case of eq.(12) and where as in egs.(11), (12)

and (13) the integration is understood to proceed over the k-sphere of I. The particle now is not in uniform but
instead in accelerated motion. If suddenly, at proper time T, the motion were to switch from hyperbolic back to
uniform because the accelerating action disappeared, we would just need to replace in eq.(14) the constant rapidity
p at that instant for at, and B; in eq. (1) would then become tanh (p/c). (But then N. ® would cease to be, for all
times onward, a function of © and force expressions as eq.(17) below would vanish). Observe that we make explicit
the T dependence of this as well as of the subsequent quantities below. N.? (1) represents encrgy flux, i.e., energy
per unit arca and per unit time in the x-direction. It also implies a parallel, x-directed momentum density, i.e., field
momentum per unit volume incoming towards the particle position, (c*/a, 0, 0) of S, at particle proper time T and as
estimated from the viewpoint of I.. Explicitly such momentum density is

— NX*(r) 87 1 . (2611‘) ho
()= —+=-X— sinh 0)—7Fdo,
g-7(7) c? 3 4zc c Jﬂ( )27r2c3

(15)
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where we now introduce the frequency-dependent coupling coefficient, 0< 1 (w) < 1, that quantifies the fraction of
absorption or scattering at each frequency. Let V, be the proper volume of the particle, namely the volume that the
particle has in the reference frame I; where it is instantancously at res at proper time T. From the viewpoint of I«,
however, such volume is then Ve = (1/y,)V, because of Lorentz contraction. The amount of momentum due to the
radiation inside the volume of the particle according to I+, i.e., the radiation momentum in the volume of the particle

viewed at the laboratory is
ho daJ
[ [ n@)5 5 )

— 3 — 1 V,,_z
p7 =V-g-’(r)=7—g-’(r)—

(16)

which is againeq. (13).

At proper time t = 0, the (c%/a,0,0) point of the laboratory inertial system I« instantaneously coincides and comoves
with the particle point of the Rindler frame S in which the particle is fixed. The observer located at x« = ¢*/a, y+ =0,
z« = 0 instantaneously, at #- =0, coincides and comoves with the particle but because the latter is accelerated with

constant acceleration a, the particle according fo 1. should receive a time rate of change of incoming ZPF
momentum of the form:

—zp

dp,

dp’ |
dr *°°

dt.

- L
I
a”n

' We postulate that such rate of change may be identified with a force from the ZPF on the particle. Such
interpretation, infuitively at least, looks natural. If the particle has a proper volume V,, the force exerted on the
particle by the radiation from the ZPF as seen in I at # =0 is then

dp. _+w _ hm’dw —
dr. =f, = ( J n(w ) ) =-m;a
(18)

Furthermore

mo |G Liolte do

is an invariant scalar with the dimension of mass. Observe that in e3.(19) we have neglected a factor of 4/3 that
should appear multiplying in front. Such factor must be neglected tecause a fully covariant analysis (Rueda and
Haisch, 1997) shows that it disappears. The corresponding form of m ; as written (and without the 4/3 factor) is
susceptible of a natural interpretation: Inertial mass is the mass of the ¢ nergy of the ZPF radiation enclosed within the
particle and that does actually interact with it ((o) factor in the integrand ).

19

THE ZERO-POINT FIELD MOMENTUM CONTENT
Limitations in the space prevents us from discussing an important comolementary approach to the previous one. The

corresponding analysis is however similar to that above and will be displayed in Rueda and Haisch (1997). It
produces instead of the time rate of p™- the time rate of p., the momentum content of the particle. The analysis
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yields a natural interpretation. The following feature deserves special attention. After the acceleration process is
completed, from the point of view of an inertial observer attached to the stationary laboratory frame there appears
associated with the body in motion a net flux of momentum density in the surrounding ZPF. In other words, on
calculating the ZPF momentum contained in the object as referenced to the observer’s own inertial frame, the
observer would conclude that a certain amount of momentum is instantaneously contained within the proper volume
V, of the moving object. This momentum is directly related to what would normally be called the physical
momentum of the object. Calculated with respect to its own frame the object itself would find not net ZPF
momentum contained within itself, consistent with the view that one’s own momentum is necessarily always zero.

RELATIVISTIC FORCE EXPRESSION

From the definition of the momentum p™- in eq.(16), from egs.(17), (18), and Newton’s third law it immediately
follows that the momentum of the particle is

p=my,.cph
(20)

in exact agreement with the momentum expression for a moving particle in special relativity. The expression for the
space vector component of the four-force is then

= . .
F-y % _%
" T a

21

and as the force is pure in the sense of Rindler (1991), after dropping the - subindex the correct form for the four-
force immediately follows

8
A)

T

d _ - - - - - -
7 =_—'_'Z(}’fm:‘:,p)=71(;—-’f)=7:(f'ﬁwf)= (F-ﬂ,,F),
(22)
in the ordinary way anticipated above.

CONCLUSION

As the expression for the ZPF reaction force of eq (18) depends only on the instantancous value of the acceleration
imposed on the accelerated object by the accelerating agent, it arguably follows that this absence of any memory
effects, i.e., of any expression in the force that reveals its underlying unidirectional hyperbolic motion origin, permits
to readily generalize the argument to much more general type of motions. Further relevant features of the gencral
argument (Rueda and Haisch, 1997) not mentioned here are a fully covariant calculation, a discussion and analysis
of the character of the k-space integrations and a more detailed evaluation of the Poynting cross products. These will
also be presented in Rueda and Haisch (1997).
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